Predictive analytics and machine learning: A dynamic duo
Predictive analytics and machine learning are seen as the pair of tools to save the day for most organizations currently. We try to de-mystify both, taking a look at what they are, how they work, and what they are good for.
Predictive analytics and machine learning working separately or together can be just what a company needs to succeed. But understanding how they work is key to figuring out how they can help businesses thrive.
So, what is predictive analytics? Datafloq’s Mark van Rijmenam uses the car metaphor, according to which traditional, descriptive analytics is like looking at the rear-view mirror to see what has happened, while predictive analytics is using a navigation system to tell you what will happen, and prescriptive analytics is a self-driving car that knows how to take you to your destination.
This metaphor, while easy to comprehend, may also be deceptively simple. It certainly is open to interpretation, so it’s a good starting point for discussion. Some might say that a navigation system presumably has access to all the data regarding potential routes. So is suggesting a route based on that data really a prediction? Isn’t that something algorithmic, deterministic, thus not really “intelligent”? Or is this a matter of definitions — semantics?
It depends on how a navigation system is defined and how it works. Typically, navigation systems do not try to predict where do you want to go today. What they do instead is they wait to get specific instructions and then they figure out how to get from point A (either explicitly given as the starting point or calculated using GPS geo-location) to point B.