DeepMind is developing one algorithm to rule them all

DeepMind is developing one algorithm to rule them all

DeepMind wants to enable neural networks to emulate algorithms to get the best of both worlds, and it’s using Google Maps as a testbed.

Classical algorithms are what have enabled software to eat the world, but the data they work with does not always reflect the real world. Deep learning is what powers some of the most iconic AI applications today, but deep learning models need retraining to be applied in domains they were not originally designed for.

DeepMind is trying to combine deep learning and algorithms, creating the one algorithm to rule them all: a deep learning model that can learn how to emulate any algorithm, generating an algorithm-equivalent model that can work with real-world data.

DeepMind has made headlines for some iconic feats in AI. After developing AlphaGo, a program that became the world champion at the game of Go in a five-game match after beating a human professional Go player, and AlphaFold, a solution to a 50-year-old grand challenge in biology, DeepMind has set its sights on another grand challenge: bridging deep learning, an AI technique, with classical computer science.

Charles Blundell and Petar Veličković both hold senior research positions at DeepMind. They share a background in classical computer science and a passion for applied innovation. When Veličković met Blundell at DeepMind, a line of research known as Neural Algorithmic Reasoning (NAR), was born, after the homonymous position paper recently published by the duo.

Read the full article on VentureBeat


Join the Orchestrate all the Things Newsletter

Stories about how Technology, Data, AI and Media flow into each other shaping our lives.

Analysis, Essays, Interviews and News. Mid-to-long form, 1-3 times per month.


Write a Reply or Comment

Your email address will not be published.